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1. Introduction

Higher order statistics, especially 211d o1der statistics, have been used to study ocean
processcs for many years in the past,and occupy an appreciable part of the research liter-
ature on physical oceanography. They i turn forin part of a much larger field of study in
statistical fluid mechanics (Moninand Yaglon 1975). With the advent of satellite remote
sensing in oceanographic data collection in the 70's, 11 mach of the bigher order statistics pop-
ular with the signal processing cornmunity (Rosenblatt 1985; Nikias and Petropulu 1993)
can and are now being applied tothe stud y of the cart h's occans. Some relevant papers
on this subject are Fu (1 983), Glazman (] 986), LeTraon (1990). Since then, improvements
in satellite technology have significantly1educedthe error content of the collected data,
resulting in better estimates of manyimportant oceanic parameters such as sea surface
height, wind speed, sea surface temperature, cte. Anexcellenit Overview on recent applica-
tions of statistics in oceanography canbe found in Chelton et al (1 994). Our purpose in
this article is to reportonsome new applications of statistic] techniquesin  oceanography,
primarily of the 2nd order, usiiig somcrecently obtained satellite altimetry data, as well
as raised some unanswered statistical probleins for future study. Some glimpses into the
applications of 3rd and higher order statistics a1 ¢ also providedfor future research.

The TOPEX/Poscidon satellite is currently at the start of its 4th year of a 5 year
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mission to map and study the wor Id’s ocean. A joint mnission between the US and France,
this satellite represents the state of- the- art in oceanographic1€note sensing technology. A
main component of the data collected by this satelliteis the sca surface height (SSH) of the
occan, which is accomplished withanonboardaltimet er. This SS11 data is available to the
public as a set of CDROMs producedin- housc at the JPL-PODAAC group (Benada 1993).
Using this data, we analyze the highecr o1 der cunnilants of the SSH field and give some
specific applications. Naturally, we willassuine for the rest of this article that all moments
exist and are finite. Readers who would like to improve their knowledge of oceanography

may wish to consult the excellent hooks of Gill (1 982) and LeBlond and Mysak  (1978).

2. Second Order Statistics

We begin by presenting an application of2nd order statistic in oceanography. The
ocean is a natural laboratory for the study of 1 sndom processes, and until the recent advent
of satellite remote sensing techniques, has hadlimited access to rescarchers. In the study of
mesoscale events (from 10 km to 500 Kkin), occanographic phenoinena such as eddies, long
gravity waves, and planetary wavesare of great interest. They carry much of the energy
stored in the ocean and act as natural capacitororstoragewiit for the earth’s energy
budget. Such events are manifested inthe varjation of the oc.call sea surface height (SSH),
which can be detected and meas uredwithrelativel y good precision i by a satellite altimeter.
Further-more, duc to the facttlatthe occanis not a unifori medium, the mass density
of water differs at different depths, forming a stratification which allows internal waves to
occur between interfaces of different densities. These internal waves can be quite energetic,
with amplitudes averaging 400 limcsthat detected on the sca surface (Wunsch and Gill
1.976). Depending on the satellite speed, sampling rate, and spacing between orbits, certain
types of waves are readily detect ¢danid thein corresponding pr operties measured. Much
of the literature in descriptive occanography consists of visually interpreting the data,

usually via a contour plot or a t iine series graph. A nore sophisticated approach starts by




partitioning the occan into square pa t ches not more than 10x] O degrees in size (a larger
patch is less likely to be spatially homogencous). The satellite ground tracks within a
patch constitute a data set of SSHmecasurcinents, called the SS}1 random field or SSH
field for snort. The sampling distance between points ona ground track is 6 km , and the
satellite repeats its pass over thesame track once every 10 days, and for this article, wc
choose 73 consecutive passes wi 1ich givesatot al of 73 (independeut ) realizations per track
(about 2 years worth of data). 1his SSH field is thin, processed to remove unwanted errors
such as sea state bias, inversebaometer effect, orbit corrections. geoid corrections, tidal
components, and finally the mean ficld is 1emoved so as to insure a mean zero SSH field. It
is claimed that the resulting estinniatc has a loot- mean- square eri o1 of 4,7 em per pass (Fu et
al 1994) and wec refer to their art icle1cgarding the dct ails of this preliminary processing of
satellite altimeter data. To improve the accuracy further, we perfor m additional processing

as follows:

(1) Passes with more than 2 consccutive bad ormissing values are dropped. These account

for less than 10 percent of the whole data sct.

(2) SSH values greater than 30 cinare treated as bad values, aud arc replaced with its

linear interpolate whencver possible.

For a large number of patclics, analysis of thisi andom ficld shows it to be approx-
imately homogeneous (Fu 1983; Le'lracon 1990) though not necessarily gaussian, which
greatly simplifies the task of its decompositioninto more fundamental components, The
cumulants of this SSH field are of great interest to physicaloceanographers, containing large
amount of information about the st ructure of the enibedded occan waves. In particular,
the 2nd order cuinulants, or autocovariance functions of SSH fields and its corresponding
spectra obtained by applying }F}*'I', have 1 IreNiousl y 1 scen used to study the properties of
mesoscale variability both in the Atlantic (1 .¢'1raon 1990) and the Pacific ocean (Glazman,

Fabrikant, and Greysukh 1996, i n p1ess).
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Wc now describe two important and distitict spat ial autocovariance (or equivalently,
autocorrelation) functions that can e corPut cd froriithe SSH ficld. The first is called
the along- track (AT) autocovariaiice function, which is namned for the fact that spatial
lags are taken along the path of the sat ellite’s g1 mu id track. lag intervals corresponds
to the sampling interval of the satcllite (6 k nfor T OPEX), w] iich can be increased by
subsampling the data. Furthermore. i1 test satcllites used in the earth sciences have exact
orbit repeat period of several days ( 10 day cycle for TOPEX). Thus, to obtain a time-
independent AT autocovariance fun ction, weaverage the autocovariance function over all
cycles. The calculations are donc as follows: since the data is gridded with a constant
spacing of 6 ki between successive points, we partition a thousaud kilometer lag space r
into consecutive bins of size Ar:6 kin each, For each track inthe patch, all SSH products
with identical lags are collected andthenaveraged over all passes over this track. This
procedure is thenrepcated for all subsequent tracks inside the patch, and the products
summed together and divided by the numnber of poirnts in each Ar bin. In mathematical
notation, let (Tijk, yijk, zijk) denote the sth point for pass j ontrack k, where (z, y) denote
the coordinates of the point, and z is arcalization of the SSH field at that point. Denote
the sum of the product pairs with lag » by Sji = : {}:i,i' zijhzigk o dist(@ije, Tijr) = 7}

Then

S
Ar]}(}'()u(r) - >;1 J’/
7

This gives us the usual biased sample estimate of the one-dimensional (1-d)
time-independent AT autocovariance function. As an illusti ation, we compute the AT
autocovariance function of the SSHficldand its power spectrum for a patch with coordi-

nates longitude 330,340, latitude 30,40, situated in the North Atlantic ocean.

Figure 1 here
Other pate.hcs have a similar pattern, withslight d if lererices that arc oceanographic

in nature and of no concern tousin this paper, henee all subsequent illustrations will be
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based on this particular patch. '1'heautocovariance function typical] y crosses the zero line
around 150-200 km, correspondiiigto wavelengths about four t iines of the zero crossing
value. The spectrum is computed by t aking the F}'T of t he aut ocovariance function with
the standard Hanning window. Specific details regar ding the shape and features of the
autocovariance and spectrum can be found in Fu (1983), Le Traon (1990), and Glazman
et al (1996, in press). In particular, aninteresting fact is that inthe mid-region (from .02
to .07 rad/km) of the above log-log plot of the AT wave-pumnber spectrum, the spectral
slope generally lies betwcen -2 @11d -3 , and has nearly the saine shape for all parts of
the world’s oceans This spectral powerlaw, analogous to t h ¢ fainous Kolmogorov's power
law for turbulence, is theorized to be the consequence of a continwous energy transfer (or
cascade) from lower wavenumbersto tiigher ones (Glazman 1996). Analogous power laws
have been found earlier for smaller wavelengtl scales such as gravity and capillary waves,
using data gathered from ships and variousnoored instruments (LeBlond anti Mysak
1978, p. 318; Phillips 1977, p. 336). The most recent theory (Glazman 1996) suggests
that the AT wave-number spectiumisactually a coniposite of two different type of waves,
shorter period (less than a day) inestia gravity waves and longer period (more than 10
days) planetary Rossby waves. 1o solve this decomnposition problemn, we arc lee] to the
estimation of the so-called between - t1ack (331 autocovariance function, which was first

utilized to study SSH field in the paper by Glazman et al (1996, in press).

The principle behind the computation of the BT autocovariance function is to de-
termine the contribution to the totalspectrum of the SSH variations from waves having
different time scales. This is accomplished by allocating spatialJag bins of size 20 km by
20 km square and dividing the total obscrvation time into temporal lag bins of 5 days
duration or more (also knowm inliterature as a synichromcily inter val (Glaziman et al 1996,
in press)). With the 5 days synchronicity interval, fast e tiagravity waves arc dccorrc-

lated at this time scale, and thei contrivputions to the SS11 spatial autocovariance function




become negligible, whereas contributions front the slower Rossby waves are dominant due
to the fact that a 5 day time lag 1) ¢l ween any two observat lons is siall compared with the
characteristic period of Rossby wuves. Dataayc collect ed for each of these spatio-temporal
bins and averaged, and the autocovariance function computed. Sinee time coordinates as
well as position of each sampled SST1 point ar ¢ recorded, it is relatively easy to compute
this BT autocovariance as a funct ion of tine and a two dimensional lag plane. The only
major drawback of this computationis the lin.ited nunber of satellite tracks, usually be-
tween 9 to 12, within a patch. 1'his cort esponds to the well-known problem of estimating
autocovariance functions with missing obscr vations, and in our case, for a lack of a better
solution, we follow the suggestiorn of a1 zen to oblain an asympt otically unbiased estimate
(Priestley 1981, p. 585). Uncle] thecassuinpt ion of an isotropic distribution, the BT au-
tocovariance becomes a functior of t lc radial distancc and time. It is then justifiable to
average out the angular contribution by intcgration to obtain a I-d BT autocovariance
function at the Oth time bin. Thecorctically, this repi esents the autocovariance function of
waves having periods more thani 5 days (since those waves with periods less than & days
arc averaged out). We describe the above steps more precisely as follows. An estimate of
the 3-d s~)atio-tempera] autocovariance function canbe obtained as follows. We can write
the SSH field as
Y{p,1) = g(p, )X (p, 1)

where g(p,t)=: 1. if (p,t)=(a, y,1) Bes on a satelite track |, anid O otherwise. The 3-d

autocovariance function is then estiinated by
Cov(e,y,) = Covx(a.u,t) - Covy (z,y,1)/Covy(a,3,1).

Equivalently, let S(z,y,1) = {)_;;7i2j + @ < dist(zi,25) < o+ Az,y < dist(ys,y;) <

y 4 Ay, t <t -- tj‘ <t M} and /Sy, t) - Hlilra < dist(l‘i,Ij) < a4+ Ax,y <

/1]
dist(yi,y;) <y 4 Ay,t <t~ 4] <1+ At} then
S(a.y,1)
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Parzen has shown that the above is a consistent estimate and is asymptotically unbiased.
By the! assumption of isotropy, @2-dversion of tile above canbe obtained by averaging

out the angular component

Va&i

Cov(r,1) - Cov(r,6,1)dd,

9 n 0

and this gives the I-d between-track autocovaiiance functions as
B1Cov(r): Cov(r, 0).

It must be mentioned that a satellite tiavels at a very high velocity (for example 10PEX
covers a 1000 km long segment of a track iscless than 3 minutes), and hence the AT
autocovariance function is more like tauking a snapshot of the ground track segment, and
the BT autocovariance function is akinto a moving average filtering of the data in the time
domain. In fact, if wc take a siall synchronicity interval At, say 3 minutes, then BTCov
coincides with ATCov, as expected. Jtturns out that for large values of At, say 5 days
or more, then BTCov and AT Cov differs in the time scale of occanic motions that they
represent, the former describing those slowermoving occan eddics and planetary waves,
and the latter that of faster intcrnal gravity waves.

Some nice relationships existhetween the spectra of the two types 0f autocovariance
functions (for example, Moninand Yaglom (1975)Sce. 12.2;Fu @ 983); Le Traon (1990)).
We specifically mention one hnport ant case, .e. forsmall At (<3 minutes), the Fourier
transform of Cov(z,y, O), F{Cov(x,y, 0)] : Fa(k1, k2), represents the power spectrum of
the 2-d SSH random field and under the assu mpt ion of isotropy, it is related to the power

spectrum Eyof the I-cl along-t] ack SS11 oscillations by

oo
/ ]‘;9(1\‘] ,}C))dk‘y = E](kl) (1)

- 00
Now for large values of At, theabove equation no Jonger holds, and the difference between

the left hand side and the right handside giveswan indication, of the residual encrgy be-

longing to the fast internal gravity waves kiown inocean literature as baroclinic inertia




gravity (BIG) waves (Glazman 1996). 131G waves travel at phase spceds on the order of
3 m/s, with wavelengths varying froiu10to 1000 kin, and have periods not exceeding
the inertial period arising fromnthe carth’s rotation (less than 24 hrs in the mid-latitude
regions). Typical graphs of the decomposition of t he ATCovinito the 2 components arc

shown below.

Figure ? her ¢

Notice the distinctly steepo slope of the spectrum of the 1 setween-track component
(from -4 to -5), and this is in agrcament with the predict ions of the geostrophic turbulence
theory (Charney 1971) on the powerlaw for 1Rossby waves. Wc concentrate on the power
spectrum of BIG waves, which contains much inforimation about the physical parameters
of the earth’s ocean, as wc will sce below. As an example, we apply the estimates above
to compute the Rossby radius of deforivation of a particular patch. The Rossby radius is
an important quantity in both ocecanand atiospheric sciences, for it is the characteristic
scale in which rotation effects of the caith become dominant (Gill 1982, p. 205), and is a
function of the ocean depth, gravitation al pull,and tile carth’s Coriolis frequency. In the
paper (Glaziman1996), the theory of BIG waves is developed and its predicted theoretical
spectrum for the direct cascade encrgy tyansfer type is given by
Fe T v 9)

(3? - 1)(:ev--ﬁ)/(n»»-l)zs/“z(v— 1)°

where z= 1 +4k?R? kisthe wavemunber, R is the Rossby radius, v is an integer denoting
the number of wave-wave iutciactions (degiee of nonlincar ity), and Q(v) is the energy
flux that depends only on v. Ancstiimate of K is immediately obtained from the data
by minnmizing the least squares it beiween the theor etical and observed spectrum. For
the Atlantic ocean, these valucs of /¢ were foundto be within reasonable agreement with
previous calculations obtained froriiin situ data (Fimery, l/cc, and Magaard 1984; Houry

ct al 1987), details of which will be presented in aforthcoming paper. Thequestion of how
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BIG waves are generated is still not well uniderstood and is currently a subject of intense
research inoceanography.

The 3-d spatio-temporal avtocovari ance functions Cov (z,y,1 ) contains quite a bit
of information about a patch. lookingat2 dslices of it of the form Cov(z, O, t) and
Cov(0,y,1t) provides information :about the p1opagationspeed of planetary waves. The
prominent elongated shape in the center of the figure below shows the westward movement
of a planetary Rossby wave, moving at a spced of around 4 cni/sec (the slope of the
shape), typical of such waves in the region (how to obtain eflicient estimates of the slope is
another statistical problem in its entir ety and will be discussedina future article). Notice
the parallel streaks that arc approximately a vear apart from the central shape, and this

indicates that thec period of such waves is closc to a year.

Figure 3 harc
A simmple illustration will show why thisis so. Assume for sitnplicity that the wave
is a plane wave, with a random phasc added to ensurestationarity, that is, U(z,t) =

Acos(kz - wt4¢) and Ee' = O. Its phasc speedin this case is given by ¢ = w/k. Then
Cov(r, 7)== [U(x 12>, i 47)U(z,t)]:: Acos(kr - wr)/2,

which is no longer random, and whose phase speed w/k and period can now be measured.
In actual practice, it is rarely t he case that planctary waves 1nimic plane waves with
constant wavenumbers and frequentics. In fact, pla net ary waves are polychromatic, and
the dispersion relationship characterizes ther elationship between those quantities, and is

equal to (Gill 1982,p. 446):

Bk
w(k) =124 T/RY 2

where k- - \/k2 -t k2 B depends only 011 latitude (assumed constant for a patch), and I

is the internal Rossby radius, lithic case of the zonal slice Cov(a, O, t),the phase speed

O




is again ¢ == w(k)/k; which now depends on both k£ and K. This provides us with an-
other alternative method for dectermniiing 12 01 ice we know the value of the wavenumber
k. It must be emphasized that the ecstimated speed obtained asthe slope of the the zonal
slices from this technique is only an a] »p oxiination of the true phase speed to the first
order. At first sight, it seems that the FET of the above autocovariance slices may yield
more information on the wave struciuic. However, this approach did not produce any
clear results, due to the complicated 1ature of the dispersion relationship and the need
for greater accuracy in the autocovariance estimates (as is well-known,the unbiased esti-
mate used is not always positive scimidefinite. It is suggested tha t the large gaps in the
estimate which are due to uneven coverage of the satellite passes inay benefit from better
interpolation methods, such as the usc of splines, since usuallinecar interpolation tech-
nigques compromises the positive $¢1idefiniteness of the autocovariance function ). Some
simulations might be helpful, suchasbuilding a imnodel of the ?-d spectrum and sec if
the corresponding inverse FF T 1eproduces some of tile features observed so far. The
following equations show the fundainent al 1elationships between various ‘spectras.  Let
Pk ky,w)= [ [ [ Cov(z,y t)expli(ak, 4 yky- wi)ldks dkydl and w == Q(k) denote the

above dispersion relation (2). Thenthe 2-d spectrum is given by
- FC\
Fky, ky) - / G(ky, hey,w)dw,
AN

and the Yourier transform of the slice C'ov(e, O, ) is given by

Fy(ksyw)= //Cov(gz,(),i)(:x}_)f i(aky - wi)]dadt

//// cyexpli(ak! - Q) )] expl- 1(ak, - wt)|dk; dk, dzdt
///F (ky ky) k) expli(w - Qk)))dk, dk; dt

s ‘/F(kx,k;)(g(cu - gl(lcg,k;))dk;

Bk, 1
O Y B R Y
(A' \[ w I? a)
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Similarly, one can show that

7y
I

ST \//b‘) *4uil;{}1/] f2>
Fylky,w)="F - -V ek

?.,L(.?

The above equations illustrate tlicitnport ant point, that the 2-d wave] umber-frequency
spectra can be obtained from the 2-d wavenumber spectr a alone.

Equation (1) also has an interesting interpretation viewed from the perspective of
computer tomography. It says t list t he along-track spectrum arc the sum-total of con-
tributions of I-d slices of the 2-dspcctrum. Utilizing the isoti opy assumption, we can
recover the full 2-d AT wavenumber spectr univia t echniques intomogr aphy, such as the
filtered back-projection algorithin (K akand S1 aney1988). By our results above, both the
2-d AT wavenumber- frequency spect 1 mnand spat io- temporal au tocovariance can also be
recovered and analyzed, a subject of currentsesearch.

Finally, onc can look at the ¥} of the whole 3-d spatio temporal autocovariance
function, and our preliminary investigationsindicate that the 3-d wavenumber-frequency

spectrum contain enough interesting “feat ures that nicrits further exploration in the future.

3. Some Applications of 3rd and Higher Order Statistics

Up to now, nothing has been sadd about thenature of the distribution of the SSH
random field. Most authors would prefer to take the simplest case and assume that
the distribution is a priori Gaussian. A check of the along-tiack 3rd order cumulant
Cum(]|r|l, |Is]]) == E(X(p)X (p 1) X (p 4 s)) for the same pate}) above shows no signifi-
cant deviation from zero at the 95% confidence level, including t be ox igin which gives the
3rd moment (skewness) Cumn(0, 0). ‘Jle test statistic used was the standard +/n times
sample mean divided by thesamnple standard deviation for cacli 6 kin by 6 km cell (the
resolution plot), where n=. 73 is the number of realizations, and t he absolute value of the
test statistic is uniformly less than1.2742 everywhere. Staudar d application of the CLT

docs not reject the null hypothesis that the 3rd order curnulant is significantly different
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from zero. of course this doesn’t prove anything about the distribution of the SSH field,
except to show that there arc no significant 3- wave interactions for this particular patch.
However, other patches we have tested did not exhibit similar behavior. For example, for
a patch in the South Atlantic with coordinateslongitude 340,350 and latitude -25,-15, the
value of the test statistic is 3.7324 {01 tlie 3rd monent, with 8 other poiuts  significantly
greater than 2 jn a 600 km x 600 kinlag space. Anappropriat ¢ nmiodel therefore for this
SSH field is of the form

X(p) Xalp) 1 X,(p),

where Xoand X, represents the noti - gaussian and gaussian component respectively, both
independent of one another. Recovery of the non- gaussian signal can be accomplished
by using the bispectrum signal rceconstruction technique popular in electronic speech and
imaging applications (Nikias and Petropulu 1 993). let C3(ky, k; ) denote the bispectrum
of X, which is the Fourier transforinof the 3rd order cumnular t Cum(||r]], ||s]]). Then
the phase ¢o(k) and magnitude ||Fu(k) ] of t he spectrum of Xy is given by (Nikias and

Petropulu1993,p. 235)

i ,
d”i’(;k) - c)“ } ] i}:/n 4 (k?,l),
, B TR o
IFE)? = o oxp (5“ i >J In HCg(k,t)H‘) ,

where Y(ky, k2) = arg(Cs(ky, ko)) and a is a positive constant. It is clear that since the
3rd order cumnulants of X, vanishes, the reconstruct ed signal belongs to the non-gaussian
component of X . Graphs of the 1nagnitudeand phase of the1ecovered signal Xo are shown

below.

Fipuie4d hare
Wc note that those values whose wavenumberslic beyond .3 rad/km are in the noise range

of the altimeter, hence not to be tyusted. That the phase is non-zero indicates that the
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signal is spatially inhomogencous. We are in the process of investigating what kind of

oceanic processcs would give rise tothisnon gaussiannon - homogeneous signal, though
we speculate that the signal is dominated by eddies and 2-d turbulence. More patches
also need to be tested to deteriuine where in the occan are such signals prevalent. One
could also compute the between-irack 3rd order cumulant using similar techniques as in
the computation of BT autocovariance function, but because of its complexit y, we leave
this open for future investigations.

If the SSH field is determined to have a significant 3rd order cumulant, then we can
compute the bicoherency function, which is the normalized magnitude of the bispectrum,
and usc it to measure the degrce of phase coupling between triads of waves (Hasselman,
Munk, arid MacDonald 1963). Inaddition, it was shown in (Masuda and Kuo 1981) that
the biphase, which is the phase of the bispectrurn, is related to theshape of the original

field X. These two quantities can be computedas follows:

v‘. ( 15K ?)H

| F ey ) (ko Y B (Ry - hea) |
»]m( j”‘( ]»lvz) }
Re(Cs(ky, ko))

However, duc to the low signal-t o-1oisc ratio observed in the 3rd order cumulants for the

])’(IZJ] s }Cy) :

B(kl,k?) = arctan

above patches, the results have so far been inconclusive. We have identified 4 possible
mechanism for which wave couplings canvoccur inthe scales wder consideration. Plan-
etary waves, BIG waves, rcsonant interaction between planctar y and BIG waves, and 2
dimensonal geostrophic turbulerice all pive 1ise to triad interactions. ‘U’here is also a need
to distinguish which type of mcchanisinarcresponsible for the couplings once they are
observed. Wc also note that in(Glazinanl996), it is theorized that 4 -wave interactions
are far more prevalent between BIG waves, hence 1t 1s an intiiguing application to use
trispectral analysis to verify this. However, this would scemn to require another major im-
provement in rer note sensing technology, as the e cased noise level would have drowned

the signal all too easily, plus the comnputational resources required to compute the 4th
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order cumulant and trispectra arc smnewhat forbidding compared to the above.

4. Conclusions

Satellite remote sensing techmology have advanced to the stage where it is now possible
to do higher order statistics with big)] p1ecision. The 1- d and 2-d autocovariance functions
were used to provide evidence tliat 131G waves exists inthe opert ocean, while 3rd order
statistics indicate the non-gaussian inhomogencous naturc of the signal, as well as the
possible wave couplings that mnay occur at the mesoscale domain. Theabove techniques
can also be applied to validate occanmodcls by €ross- chiecking the results computed with
a model with those obtained fromthe satellite altimeter. Inthe years ahead, we foresec
that satellite remote sensing will becotne 11101 ¢ and more common, having already replaced
the ocean-faring research vessel asthe defacto standard for collection of oceanographic
data. Technological progress have made them economically chea per and are astonishing
in their capability to haul in huge chunks of global data that a 1 ¢ magnitudes greater in
comparison to in situ methods, 1 {cscaichare carrently conductedto inc. corporate even more
oceanographic variables that aic notcurrentlyaccessible to satellite deteetion, and all this
would require the use of advance statistical procedurces to process the resulting information

for human consumn })tion .
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